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Abstract
For any root system� and a set of vectorsR which form a single orbit of the
reflection (Weyl) groupG� generated by�, a spin Calogero–Moser model
can be defined for each of the potentials: rational, hyperbolic, trigonometric
and elliptic. For each memberµ of R, to be called a ‘site’, we associate a
vector spaceVµ whose element is called a ‘spin’. Its dynamical variables are
the canonical coordinates{qj , pj } of a particle inRr (r = rank of�) and spin
exchange operators{P̂ρ} (ρ ∈ �) which exchange the spins at the sitesµ and
sρ(µ). Heresρ is the reflection generated byρ. For each� andR a spin
exchange model can be defined. The Hamiltonian of a spin exchange model
is a linear combination of the spin exchange operators only. It is obtained by
‘freezing’ the canonical variables at the equilibrium point of the corresponding
classical Calogero–Moser model. For� = Ar andR = set of vector weights
it reduces to the well-known Haldane–Shastry model. Universal Lax pair
operators for both spin Calogero–Moser models and spin exchange models are
presented which enable us to construct as many conserved quantities as the
number of sites fordegenerate potentials.

PACS numbers: 02.30.lk, 02.20.−a, 75.10.Dg, 75.10.Jm

1. Introduction

The essential part of our knowledge of quantum many-body systems is concerned with
integrable models in one dimension. Among other well-known theories such as the sine-
Gordon and affine Toda field theories, correlated electron models (Hubbard,t–J, etc) and
quantum spin chains (XXZ, etc), the Calogero–Moser (CM) models [1–4] with long-range
interactions are actively investigated during the last decade. Their links to the models of
solid-state physics [5–13] have been found, and they are based on the possibility to introduce
also the spin exchange interaction in a translation-invariant form. However, the CM models
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can be formulated in classical and quantum mechanics for any root system [14–19], and one
can guess that introduction of spin exchange can be done at least for some root systems too.
There were several attempts [8–10,12] in this direction, but they were far from being universal
in a way for introducing spin into the CM models.

In this paper, we consider the possibility of unifying all the previous approaches to
spin Calogero–Moser models and related models of spin exchange interactions obtained by
‘freezing’ the canonical variables at the equilibrium points of the corresponding classical CM
systems. This can be done by constructing universal Lax representations for degenerate forms
of the CM potentials. There are also some indications that the corresponding models with
most general elliptic potentials are also integrable [6, 13], but the construction of Lax pair in
this case does not lead directly to integrability.

The organization of the paper is as follows. In section 2, the universal Lax operators
for the CM models with degenerate potentials [17, 18] are briefly recapitulated. The way of
introducing spin exchange in the framework of the above formalism is proposed in section 3
so as to prove the integrability of the spin CM models for all root systems. The existence of
conserved quantities is guaranteed by the ‘sum to zero’ condition for the second Lax operator.
Section 4 is devoted to the models with spin exchange operators only. The corresponding
Lax operators lead in the trigonometric case andAr root system to Haldane–Shastry model
[5]. The Polychronakos model [8, 12] corresponds in this approach to the rational case with a
confiningq2 potential. The final section is devoted to summary and comments.

2. Universal Lax operator for Calogero–Moser model with degenerate potential

In this section we briefly recapitulate the essence of Calogero–Moser models based on any
root system� (applicable also to the exceptional and non-crystallographic root system) and
the associated universal Lax pair formalism along with appropriate notation [16–19] and
background [14, 15] for the main body of this paper. Those who are familiar with the universal
Lax pair formulation may skip this section and return when necessity arises. A Calogero–
Moser model is a Hamiltonian system associated with a root system� of rank (r), which
is a set of vectors inRr with its standard inner product, invariant under reflections in the
hyperplane perpendicular to each vector in�. In other words,

sα(β) ∈ � ∀α, β ∈ � sα(β) = β − (α∨· β)α α∨ ≡ 2α/|α|2. (2.1)

The set of reflections{sα, α ∈ �} generates a groupG�, a finite reflection group, known as
the Coxeter (Weyl) group. The set of roots� is decomposed into a disjoint sum of the positive
roots�+ and negative roots�−. The dynamical variables of the Calogero–Moser model are
the coordinates{qj } and their canonically conjugate momenta{pj }, which will be denoted by
vectors inRr with the standard inner product:

q = (q1, . . . , qr ) p = (p1, . . . , pr ) p2 = p · p =
r∑
j=1

p2
j . (2.2)

The Hamiltonian for classical Calogero–Moser model with a degenerate potential reads

HC = 1

2
p2 +

1

2

∑
ρ∈�+

g2
|ρ||ρ|2V (ρ · q), (2.3)

in which the potential functionV is listed in table 1. Here we have omitted the scale factor
for the trigonometric (hyperbolic) potential, for simplicity. The associated universal Lax pair
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operators read

L = p · Ĥ +X X = i
∑
ρ∈�+

g|ρ| (ρ · Ĥ ) x(ρ · q) ŝρ (2.4)

M̃ = i

2

∑
ρ∈�+

g|ρ||ρ|2 y(ρ · q) ŝρ (2.5)

in which the functionsx(u) andy(u) are listed in table 1. These functions are related by

y(u) ≡ dx(u)/du V (u) = −y(u) = x2(u) + constant. (2.6)

The realpositive coupling constantsg|ρ| are defined on orbits of the corresponding reflection
group, i.e. they are identical for roots in the same orbit. That is, for the simple Lie algebra cases
one coupling constantg|ρ| = g for all roots in simply laced models and two independent
coupling constants,g|ρ| = gL for long roots andg|ρ| = gS for short roots in non-simply laced
models. The operatorŝHj andŝρ obey the following commutation relations:

[Ĥ j , Ĥ k] = 0 (2.7)

[Ĥ j , ŝα ] = αj (α∨ · Ĥ )ŝα (2.8)

ŝα ŝβ ŝα = ssα (β) ŝ2α = 1 ŝ−α = ŝα (2.9)

In terms of these commutation relations it is easy to show that the canonical equations of
motion can be represented in an operator form:

q̇j = pj ṗj = −∂HC

∂qj
⇔ d

dt
L = [L, M̃]. (2.10)

Table 1. Functions appearing in the Hamiltonian and Lax pair.

V (u) x(u) y(u)

Rational 1/u2 1/u −1/u2

Trigonometric 1/ sin2 u cotu −1/ sin2 u

Hyperbolic 1/ sinh2 u cothu −1/ sinh2 u

Let us choose a set ofD vectorsR which form a single orbit of the reflection (Weyl)
groupG�. It is a collection ofRr vectors, each is called a ‘site’:

R =
{
µ(1), . . . , µ(D)

∣∣µ(k) ∈ Rr
}
. (2.11)

That is any site ofR can be obtained from any other site by the action of the reflection (Weyl)
group. Thus the (length)2 of the vectorsµ(k) are equal:(

µ(j)
)2 =

(
µ(k)

)2 ∀µ(j), µ(k) ∈ R. (2.12)

ThenL andM̃ areD ×D matrices whose elements are given by

(Ĥ j )µν = µjδµν (ŝρ)µν = δµ,sρ(ν) = δν,sρ(µ). (2.13)

The essence of the Lax pair is the following set of identities among the functions{x(ρ · q)}
and{y(ρ · q)} expressed in matrix forms:

[X, M̃] = −Ĥ · ∂V
∂q

V = 1

2

∑
ρ∈�+

g2
|ρ||ρ|2V (ρ · q) (2.14)

[p · Ĥ , M̃] = i

[
−1

2

∂2

∂q2X

]
(2.15)
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in which the right-hand side of (2.14) is a diagonal matrix. The matrixM̃ has a special
property (see (2.36) of [18]):∑

µ∈R
M̃µν =

∑
ν∈R

M̃µν = −iVS VS = 1

2

∑
ρ∈�+

g|ρ||ρ|2V (ρ · q) (2.16)

in whichVS is independent ofµ andν. Note thatVS is different fromV in (2.14), which is
quadratic in the couplingg|ρ|, whereasVS is linear. We can define a new matrixM,

M = M̃ + iVS × I I : Identity operator (2.17)

which satisfiessum up to zero condition∑
µ∈R

Mµν =
∑
ν∈R

Mµν = 0. (2.18)

Since the elements of the matricesX andM are numbers andVS × I commutes withX, we
have from (2.14)

[X,M] = −Ĥ · ∂V
∂q

(2.19)

which is the content of the usual Lax pair.

3. Spin Calogero–Moser model with degenerate potential

Now let us define a spin Calogero–Moser model associated with a root system� and a set of
vectorsR forming a single orbit of the reflection (Weyl) groupG�. In other wordsR is the
set of ‘sites’. A dynamical state of the model is a wavefunctionψ(q) times a vectorψS which
takes value in theD multiple of a vector spaceV;

ψS ∈ D⊗V. (3.1)

EachV is associated with siteµ. In other wordsψS can be represented by its component spin
ψ
(µ)
S at the siteµ, orψ(j)S at sitej for short

ψS =
∣∣∣ψ(1)S , . . . , ψ(D)S

〉
. (3.2)

Let us introduce a spin exchange operatorP̂ρ associated with each rootρ ∈ �
P̂ρ :ψS → P̂ρψS (P̂ρψS)(µ) = ψ(sρ(µ))S ∀µ ∈ R. (3.3)

Obviously{P̂ρ} (ρ ∈ �) satisfy the same commutation relations as{ŝρ}:
P̂αP̂β P̂α = P̂sα(β) P̂2

α = 1 P̂−α = P̂α (3.4)

andŝα , Ĥ j andP̂β commute since they act on different spaces

[ ŝα, P̂β ] = 0 = [Ĥ j , P̂β ]. (3.5)

Likewise, the quantum operators{qj } and{pk} commute withP̂ρ
[qj , P̂ρ ] = 0 = [pk, P̂ρ ] j, k = 1, . . . , r ∀ρ ∈ �. (3.6)

By multiplying P̂ρ to the functionsx(ρ · q) andy(ρ · q) in X andM̃, we define new
matricesXS andM̃S :

XS = i
∑
ρ∈�+

g|ρ| (ρ · Ĥ ) x(ρ · q) P̂ρ ŝρ (3.7)

M̃S = i

2

∑
ρ∈�+

g|ρ||ρ|2 y(ρ · q) P̂ρŝρ (3.8)
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whose elements are no longer numbers but operators now. As in the previous section we define
a new matrixMS ,

MS = M̃S + iA × I (3.9)

which satisfiessum up to zero condition, too∑
µ∈R

(MS)µν =
∑
ν∈R
(MS)µν = 0. (3.10)

The operatorA now depends on the spin exchange operators{P̂ρ}

A = 1

2

∑
ρ∈�+

g|ρ||ρ|2V (ρ · q)P̂ρ. (3.11)

Since the commutation relations of{Ĥ j , ŝρ} and{Ĥ j , ŝρ ≡ P̂ρ ŝρ} are identical we have the
following main result

[XS, M̃S ] = −Ĥ · ∂V
∂q

(3.12)

in which the right-hand side does not contain operators{P̂ρ}. This is because they cancel
out by the relationP̂2

ρ = 1. The right-hand side can be replaced by the obvious identity in
quantum theory

−Ĥ · ∂V
∂q

= i[HC, p · Ĥ ]. (3.13)

If we rewriteM̃S in terms ofMS , we obtain

[XS,MS − iA] = i[HC, p · Ĥ ] (3.14)

in which the second commutator in the left-hand side no longer vanishes. By adding (3.14) to

[p · Ĥ ,MS − iA] = i

[
p2

2
,XS

]
(3.15)

we arrive at the desired equation

[p · Ĥ +XS,MS ] = i[HS, p · Ĥ +XS ] (3.16)

HS ≡ HC − A = 1

2
p2 +

1

2

∑
ρ∈�+

|ρ|2g|ρ|(g|ρ| − P̂ρ) V (ρ · q) (3.17)

which is auniversal Lax equation for the spin Calogero–Moser model

i[HS, LS ] = [LS,MS ] LS = p · Ĥ +XS. (3.18)

defined by the HamiltonianHS (3.17). That is, this applies to any spin Calogero–Moser
models based on any root system� and a set of vectorsR forming a single orbit of the
reflection (Weyl) groupG� and for any degenerate potentials. From this follows

i
[
HS, LkS

]
=

[
LkS,MS

]
or

i

[
HS,

(
LkS

)
µν

]
=

∑
κ∈R

{(
LkS

)
µκ
(MS)κν − (MS)µκ

(
LkS

)
κν

}
. (3.19)

Thanks to the sum up to zero condition ofMS (3.10) we obtain the conserved quantity as the
Total sum (Ts) ofLkS instead of the diagonal sum (Tr):[
HS,Ts

(
LkS

)]
= 0 Ts

(
LkS

)
≡

∑
µ,ν∈R

(
LkS

)
µν

k = 2, . . . . (3.20)
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This type of conserved quantity was known for theAr spin Calogero–Moser models for the
set of vector weights [7, 9]. Note that (3.15) is obtained from (2.15) by replacingX andM̃ by
XS andM̃S .

Some remarks are in order.

1. When all the spins are the same,

ψ
(1)
S = ψ(2)S = · · · = ψ(D)S

the action of the spin exchange operators becomes that of the identity operator

P̂ρ = 1 ∀ρ ∈ �.
Then the HamiltonianHS (3.17) reduces to that of the quantum Calogero–Moser models
and the Lax operatorLS andMS become identical to the universal quantum Lax pair
operator derived by Bordneret al [18].

2. The form of the spin Calogero–Moser Hamiltonian (3.17) depends on the root system�

only, although its actual operator contents depend on the chosen set of ‘sites’R.
3. For theAr model with the set of vector weights, the present spin Calogero–Moser

coincides with the existing one. For the other root systems the present model is completely
new, to the best of our knowledge (see the remarks in the following entry). It should be
emphasised that even for theAr root system the present formulation of the spin Calogero–
Moser models defines many different models corresponding to many different orbits of
the symmetric groupSr+1, which is the Weyl group ofAr .

4. For theAr model with the set of vector weights the number of ‘sites’ isr + 1 which is
equal to the degrees of freedom of the associated particle motion, if theAr root system
is embedded intoRr+1 as is done customarily. This is a rather exceptional situation.
In all the other orbits ofSr+1 and for all the other root systems (except for the trivial
representation), the number of sites, or the dimensions ofR, is bigger thanr, the rank
of �. For example, the set of vector weights ofDr or the set of short roots forBr
consists of 2r vectors, which in a conventional parametrization of the roots take the form
R = {±ej , j = 1, . . ., r|ej ∈ Rr , ej · ek = δjk}. Our spin Calogero–Moser models
require all these 2r sites. There are some references in which spin Calogero–Moser
models forBr , Cr , Dr orBCr are discussed [10–12]. In all these papers, the number of
sites is equal to the rank of the root systems. These are different from the present spin
Calogero–Moser models.

5. The present formulation of the spin Calogero–Moser models together with the Lax pair
formulation does not require any specific structure of the ‘spin’ spaceV attached to each
site.

6. It is well-known that for the spin 1/2 case in theAr model with the set of vector weights,
the spin exchange operators{P̂ρ} can be expressed in terms of the local Pauli spin matrix
at each site aŝPej−ek = (1 + �σj · �σk)/2. For the set of vector weights ofDr or R being
the set of short roots forBr mentioned above, we have

P̂ej = [(1 + �σj · �σ−j )/2]
P̂ej−ek = [(1 + �σj · �σk)/2][(1 + �σ−j · �σ−k)/2]

P̂ej+ek = [(1 + �σj · �σ−k)/2][(1 + �σ−j · �σk)/2].
(3.21)

In other words,P̂ej+ek exchanges the spins at sitej and−k and simultaneously the spins
at−j andk. Similar expressions exist for other choices ofR and root systems forsu(2),
su(N) or other spins.
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7. It is easy to verify, as in the Calogero–Moser models, that the HamiltonianHS (3.17)
is obtained as the lowest member of the conserved quantities derived from the Lax pair
formulation:

HS ∝ Ts
(
L2
S

)
. (3.22)

8. The conserved quantities{Ts(LkS)} are essentially the same as those obtained in terms
of the Dunkl [20] operators, and/or the exchange operator formalism [8]. The same
remark applies to the conserved quantities of the spin exchange models to be discussed in
section 4. For the quantum CM models without spin, the equivalence of the Lax pair
formalism and Dunkl operator formalism was proven in [19].

9. The Yangian symmetry [21,22] for the spin CM model and spin exchange model based
on any root system is an interesting challenge.

10. The commutativity of the conserved quantities obtained from the above Lax pair
formulation will be discussed elsewhere.

3.1. Rational spin Calogero model

In this subsection we will define the rational spin Calogero–Moser model with quadratic
confining potential, to be called the rational spin Calogero model for brevity. The Hamiltonian
is given by

HRS = 1

2
p2 +

1

2
ω2q2 +

1

2

∑
ρ∈�+

|ρ|2g|ρ|(g|ρ| − P̂ρ)
(ρ · q)2 . (3.23)

The construction of the Lax pair follows the same pattern as the case without the spin degrees
of freedom. Since the added potential1

2ω
2q2 commutes withXS , the canonical equations of

motion to be obtained fromHRS are equivalent to

L̇S = i[HRS,LS ] = [LS,MS ] − ω2Q Q ≡ q · Ĥ (3.24)

in whichLS andMS are the Lax pair for the rational (1/(ρ · q)2) potential only. Let us define

L±
S = LS ± iωQ (3.25)

whose time evolution reads

L̇±
S = [L±

S ,MS ] ± iωL±. (3.26)

Here we have used well-known relations [17,18]

Q̇ = p · Ĥ = LS −XS [Q,MS ] = −XS. (3.27)

If we define

LS = L+
SL

−
S (3.28)

its time evolution is Lax-like:

L̇S = i[HRS,LS ] = [LS,MS ]. (3.29)

Thus we obtain conserved quantities

Ts(Lk) k = 1, . . . . (3.30)

The lowest conserved quantity Ts(L) gives the HamiltonianHRS (3.23)

Ts(L) ∝ HRS +


 r

2
+

∑
ρ∈�+

g|ρ|P̂ρ


 (3.31)

plus additional terms which commute with all the spin exchange operators{P̂ρ}.



7628 V I Inozemtsev and R Sasaki

4. Spin exchange model

The spin exchange model is defined for a root system� and a set of vectorsR forming a
single orbit of the reflection (Weyl) groupG�. Its dynamical state is represented by a vector
ψS only which takes value in theD multiple of a vector spaceV;

ψS ∈ D⊗V. (4.1)

As in the spin Calogero–Moser model case eachV is associated with siteµ. In other words
ψS can be represented by its component spinψ

(µ)
S at the siteµ, orψ(j)S at sitej for short

ψS =
∣∣∣ψ(1)S , . . . , ψ(D)S

〉
.

In fact, the spin exchange model is obtained from the corresponding spin Calogero–Moser
model by ‘freezing’ the particle degrees of freedom:

p = 0 q = q0 (4.2)

in whichq0 is an equilibrium position of the classical Calogero–Moser potential

∂V
∂q

∣∣∣∣
q=q0

= 0 V = 1

2

∑
ρ∈�+

g2
|ρ||ρ|2V (ρ · q). (4.3)

Since the rational potential without the quadratic confining potential or the hyperbolicpotential
do not have any equilibrium points, this automatically selects the trigonometric potential.
The rational potential with the quadratic confining potential case will be discussed in the
next subsection separately. The equilibrium positionq0 for the trigonometric potential is
determined uniquely in each Weyl alcove. In other words, ifq0 is an equilibrium point so is
sα(q0), which defines an equally integrable model. Let us fixq0 and defineXE andM̃E in
terms of the Lax pair operators of the corresponding spin Calogero–Moser model atq = q0:

XE = XS |q=q0 M̃E = M̃S |q=q0. (4.4)

The components of the matricesXE andM̃E are linear combinations of the spin exchange
operatorsP̂ρ and the coefficients are just numbers. They satisfy a simple matrix identity

[XE, M̃E ] = 0 (4.5)

and as beforẽME has a special property:∑
µ∈R

(M̃E)µν =
∑
ν∈R
(M̃E)µν = −iAE AE = 1

2

∑
ρ∈�+

g|ρ||ρ|2V (ρ · q0)P̂ρ .

As in the previous section we define a new matrixME ,

ME = M̃E + iAE × I
which satisfies thesum up to zero condition, too∑

µ∈R
(ME)µν =

∑
ν∈R
(ME)µν = 0. (4.6)

By rewriting (4.5) in terms ofME we arrive at the Lax representation of the spin exchange
model:

i[HE,XE ] = [XE,ME ], (4.7)

in which the HamiltonianHE of the spin exchange model is

HE = 1

2

∑
ρ∈�+

g|ρ||ρ|2V (ρ · q0)(1 − P̂ρ) = −AE + constant. (4.8)
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The added constant simply shifts the ground state energy. The Lax pair supplies the conserved
quantities as theTotal sum (Ts) ofXkE :[
HE,Ts

(
XkE

)]
= 0 Ts

(
XkE

)
≡

∑
µ,ν∈R

(
XkE

)
µν

k = 3, . . . . (4.9)

It is interesting to note that the first two members Ts(X1
E) and Ts(X2

E) are trivial, in contrast
to the spin Calogero–Moser case.

Some remarks are in order.

1. As in the spin Calogero–Moser model, the form of the spin exchange model Hamiltonian
HE (4.8) depends on the root system� only, although its actual operator contents depend
on the chosen set of ‘sites’R. These many models corresponding to various orbits (or
sets of sites), sharing the same set of conserved quantities, can be considered to constitute
an integrablehierarchy belonging to the root system�.

2. It should be remarked that theq0 is the equilibrium pointnot of the function appearing
in the HamiltonianHE (4.8) which is linear in the coupling constantsg|ρ| but that of
the potential of theclassical Calogero–Moser HamiltonianHC (2.3) which is quadratic
in the coupling constants. This difference is meaningful only for the models based on
non-simply laced root systems.

3. It should be emphasised that the ‘coordinates’q or ratherq0 are just a set of numbers
rather than dynamical variables. Thus, in contrast to the conventional approach [5,8], the
notion of ‘position exchange operator’ is not used in our approach.

4. For theAr model,q0 can be chosen to be ‘equidistant’:

q0 = π(1,2, . . . , r, r + 1)/(r + 1), (4.10)

thanks to the well-known trigonometric identity
r+1∑
k� =j

cos [π(j − k)/(r + 1)]

sin3[π(j − k)/(r + 1)]
= 0.

The Haldane–Shastry model [5], i.e. theAr spin exchange model withR being the set of
vector weights, has been understood quite well because of this simplifying feature.

5. The equidistance ofq0 for Ar seems rather fortuitous. As remarked above, any
transposition of the aboveq0 (4.10) provides an equally integrable spin exchange model,
but the equidistance property is lost. As forDr (r � 4), we have not been able to find
equidistantq0. ForBCr model, equidistantq0 can be achieved for certain ratios of the
coupling constants. For the following parametrization of the potential [4, 16],

V =
r∑
j<k

[
g2
M

sin2(qj − qk) +
g2
M

sin2(qj + qk)

]
+

r∑
j=1

gS(gS + 2gL)

2 sin2(qj )
+

r∑
j=1

2g2
L

sin2(2qj )
(4.11)

one obtains equidistant equilibrium positions:

q0 = π(1,3, . . . ,2r − 1)/4r for gL/gM = 1/2, gS = 0 (4.12)

q0 = π(1,2, . . . , r)/2(r + 1) for gL/gM = 3/2, gS = 0 (4.13)

q0 = π(1,2, . . . , r)/(2r + 1) for gL/gM = 1/2, gS/gM = 1. (4.14)

These cases were discussed in some detail by Bernardet al [11].
6. Note that the present derivation of the spin exchange model and its Lax pair does not

adopt the strong coupling limit.
7. For most general elliptic potentials, the Lax pair can be constructed in a usual manner

[14]. But the second Lax operator does not satisfy the ‘sum to zero’ condition, hence the
integrability of these models is not yet established.
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4.1. Rational spin exchange model

The above formulation fails to give integrable spin exchange model with rational potential.
This can be remedied by adding a harmonic confining potential [8,12] which creates
equilibrium points in each Weyl chamber. Here we derive the Lax operator formalism for
these models. Let us start with the Lax pair for the rational Calogero–Moser models and for
the time being keep the value ofq unspecified. We have as in (2.14)

[X, M̃] = −Ĥ · ∂V
∂q

and after multiplyingP̂ρ to functionsx(ρ · q) andy(ρ · q), we obtain (3.12)

[XS, M̃S ] = −Ĥ · ∂V
∂q
. (4.15)

The diagonal matrixQ (3.19) satisfies the relation (3.27)

[Q, M̃S ] = −XS. (4.16)

If we define two new matricesX±
S

X±
S = XS ± iωQ (4.17)

they satisfy simple commutation relations thanks to (4.15) and (4.16)

[X±
S , M̃S ] = ∓iωX±

S − Ĥ · ∂VRC
∂q

(4.18)

in whichVRC is the potential of the classical rational Calogero–Moser model with harmonic
confining potential

VRC = 1

2
ω2q2 +

1

2

∑
ρ∈�+

g2
|ρ||ρ|2
(ρ · q)2 . (4.19)

Now we chooseq0 as an equilibrium point ofVRC and define

X±
RE = X±

S |q=q0 M̃RE = M̃S |q=q0

∂VRC
∂q

∣∣∣∣
q=q0

= 0. (4.20)

Thus we arrive at[
X+
REX

−
RE, M̃RE

] = X+
RE

[
X−
RE, M̃RE

]
+

[
X+
RE, M̃RE

]
X−
RE = 0. (4.21)

We defineMRE by

MRE = M̃RE + iARE × I (4.22)

ARE = 1

2

∑
ρ∈�+

g|ρ||ρ|2P̂ρ
(ρ · q0)2

(4.23)

so thatMRE satisfies thesum to zero condition∑
µ∈R

(MRE)µν =
∑
ν∈R
(MRE)µν = 0. (4.24)

Then (4.21) can be rewritten as a Lax representation for the rational spin exchange model

i[HRE,X+
REX

−
RE ] = [X+

REX
−
RE,MRE ] (4.25)

in which the rational spin exchange HamiltonianHRE is defined by

HRE = 1

2

∑
ρ∈�+

g|ρ||ρ|2
(ρ · q0)2

(1 − P̂ρ) = −ARE + constant. (4.26)
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The conserved quantities are obtained as theTotal sum of
(
X+
REX

−
RE

)k[
HRE,Ts

((
X+
REX

−
RE

)k)]
= 0 k = 1, . . . . (4.27)

It is interesting to note that the above HamiltonianHRE depends on the harmonic confining
potential12ω

2q2 only through the valueq0.

5. Summary and comments

We have shown that the integrability of spin Calogero–Moser model and the spin exchange
model with degenerate potential and based on any root system is a direct consequence of the
integrability of the corresponding classical Calogero–Moser system. For a given root system
� there are many integrable spin Calogero–Moser models and the spin exchange models
corresponding to many choices ofR’s which are the orbits of the reflection group. These
define physically different models sharing the same exchange features.

After completion of the present work, we came across [23] which discusses the integra-
bility of spin BCr model with harmonic confining potential, or ‘spin Inozemtsev model’ [4]
in terms of the Dunkl operator formalism [20].
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